

Available online at www.sciencedirect.com

Procedia

Energy Procedia 63 (2014) 2199 - 2206

GHGT-12

Calcium looping cycle for CO₂ capture:

Performance, cost and feasibility analysis

Hari C. Mantripragada^a * and Edward S. Rubin^a

^aDepartment of Engineering and Public Policy, BH129, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213

Abstract

Calcium looping (CaL) systems have been proposed as a lower-cost method of CO_2 capture for power plants. This paper presents the results of a techno-economic assessment of a CaL system for post-combustion CO_2 capture at a pulverized coal (PC) power plant. Comparisons are made with a conventional MEA-based CO_2 capture process in terms of performance and cost. Considering the significant quantities of solid flows required for a CaL process, the applicability and operational feasibility of a CaL system for new or existing PC power plants also is studied. It was found that though the CaL system has better performance than the MEA-based CO2 capture process, the capital cost of the power plant and the cost of electricity is much higher than when the MEA-based system is used.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of the Organizing Committee of GHGT-12

Keywords: CO2 capture; calcium looping; post-combustion; techno-economic analysis

1. Introduction

The calcium looping (CaL) process utilizes the reversible chemical reaction between lime (CaO) and CO₂ in order to capture CO₂ from gaseous streams [1]. CO₂ in a gas stream reacts with CaO in an exothermic carbonation reaction to form CaCO₃ at temperatures in the range of 600-700°C. The product CaCO₃ from the carbonator is then sent to a separate vessel called a calciner where the calcination reaction takes place at a high temperature (around

^{*} Corresponding author. Tel.: +1-412-268-5285; fax: +412-268-3757. *E-mail address*: mharichandan@cmu.edu